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Abstract

Feature counts play a crucial role when computing good reward weights in inverse
reinforcement learning. Despite their importance, little work has focused on
developing better methods for estimating feature counts. In this work, we propose
a new method for estimating feature counts for scenarios with a small number of
long demonstrations. Most existing algorithms perform poorly in this scenario.
In particular, we propose two new algorithms, E-DLS and E-SLS, which can
efficiently use a small number of long demonstrations to estimate feature counts.
We show that E-SLS estimates are unbiased, which is the first such estimation
algorithm. Our experimental results on benchmark problems demonstrate better
learned reward weights when feature counts are estimated with E-DLS and E-SLS
compared to other popular methods.

1 Introduction

In imitation learning, an agent aims to learn desirable behavior by observing demonstrations from an
expert that consist of sequences of states (and sometimes, corresponding actions). A key challenge in
IRL is to generalize the expert’s behavior to states for which no expert action has been observed. A
popular and efficient generalization method is to assume that the unknown rewards can be represented
as a linear combination of a given set of features [2, 9]. Using this linearity assumption, many
popular IRL algorithms are based on feature count matching, where the goal is to construct a
policy that has feature counts as similar as possible to the empirical feature counts observed in the
demonstrations [1, 2, 9, 10]. If the estimated feature counts are inaccurate, it is likely that the learned
policy will not match the policy of the expert. To compute the feature counts, most prior work
estimates the empirical discounted feature counts [6]. This approach may be sufficient when the
objective tasks are small or there is an abundance of data. However, when the tasks are long and
only a few demonstrations are available, existing methods are inefficient due to the discount factor
diminishing the value of observations later in the episodes. In this paper we look to formulate new
methods of estimating feature counts that are more robust to the limitations of discounting long
episodes.

Related prior work that shares our goal of estimating feature counts from limited demonstrations is
Least Squares Temporal Difference Learning for u (LSTD-p) [4]. LSTD-u considers the well-known
LSTD for value function approximation [8] and adapts it to estimating feature counts. LSTD-p is
specifically effective when there are a few long demonstrations, making it a preferred method of
feature count estimation when obtaining expert samples is expensive. The algorithm is based on
temporal difference (TD) methodologies and the linear least squares algorithm. TD uses bootstrapping,
which does not provide guarantees for finite-sample generality, and may experience a significant
amount of bias if given a set of demonstrations with less diversity in state visitations. Also, LSTD-u
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requires an additional set of feature-count features, which may be difficult to construct. If designed
improperly, these additional features can introduce significant error into the process.

As the main contribution of this paper, we introduce two new methods for estimating feature counts
when data is limited and the episodes are long. The first method, which we call Estimation by
Deterministic Length Segments (E-DLS), produces a more efficient feature count estimation in
scenarios with a small number of long demonstrations compared to existing methods [1]; which
are inefficient for long demonstrations because discounting makes observations in the future less
important. The main idea of E-DLS is to divide up expert episodes into segments beginning at initial
starting states and continuing until the end of the episode. This ensures that observations later in the
episode have sufficient presence in the numerical computation of the estimation.

Building on E-DLS, our second method, Estimation by Stochastic Length Segments (E-SLS), preserves
the efficiency of E-DLS but also guarantees that the feature count estimates are unbiased. A common
reason for the bias of existing methods [1] is that the demonstrated episodes are of a fixed length.
Clipping the episodes such that their length is deterministic can introduce significant bias. The main
idea of E-SLS is to (1) compute the expert occupancy frequency without a discount factor, and (2)
use the notion of probabilistic termination when determining the length of segments. While each
one of these modifications alone introduces potential bias in the expert feature count estimation, we
tune the methods to extract impressive results in Section 5 and show in Section 4 that E-SLS is an
unbiased estimator for feature counts.

2 Preliminaries and Framework

We first summarize the notation in this paper. Random variables and matrices are denoted with capital
letters. Vectors, such as x, are types using bold font, and their elements, such as x;, are typeset
regularly. We use A® to denote the probability simplex over S.

We model the problem as a discounted infinite-horizon Markov Decision Process (MDP) [7]. An
MDP is a tuple M = (S, A, P,r, o) comprising a finite set of states, S = {1,..., 5}, a finite set
of actions A = {1,..., A}, transition probabilities, P : S x A — AS rewards S x A= R,
and initial state dlstr1but10n o € AS. We define S, = {s €S : as > 0} as the set of states
with positive initial probability. A standard assumption in IRL is that rewards can be expressed
as a linear combination of features ¢ : S x A — R* where k is the number of features. Hence,
r(s,a) = w'¢(s,a) foreach s € S,a € A and some unknown weights w € R¥.

Occupancy frequencies play an important role in many IRL algorithms. We use u™ : S x A — R to
denote the state-action occupancy frequency for each policy 7. In MDPs with large state and action
spaces, computing the exact occupancy frequencies is difficult. Instead, one can compute feature
counts ™ € R¥ [3] to generalize occupancy frequencies to MDPs with large state and action spaces.
Feature counts are defined as:

Z'y d(Si, Ay) | S1~a, Ay ~m(Sy) | . (1)

Feature counts are a good substitute for occupancy frequencies when one assumes that rewards can
be expressed in terms of the features ¢. This is because the return p™ € R of a policy 7 satisfies that

7r:ZZu”(s,a)~ ZZZU s,a) - ¢;(s,a) wjfz,uj w; =w' p"
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A crucial aspect of IRL is to learn to mimic an unknown policy 7 : S — A from a fixed set of expert

observations D = (71, 72, ..., 7r) where each episode, 7; = ((8;,1,a:,1), - - -, (85, | =15 Gi,|r|-1) )
is a finite set of sequential state-action pairs such that @, ; = mg(8; ). Given the data descrlbed
above, the objective in many classical IRL methods has been to use feature count matching [1, 2, 9],
. E
min [|p" — p| + (), )
mell
where u = p™=, || - || is some vector norm, and 1 : IT — R is some regularization function. Clearly,

the precise value of u” is unknown and must be estimated from Dg. The standard method for



estimating i ~ p¥ is to compute
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Recall that $; and a, are the observed state and action at time-step ¢ in episode 7.

A significant limitation of the standard estimation in (3), is that it makes a single sequential pass
through each episode. As a result of discounting, later terms in the episode give little to negligible
impact on the value of i”. In the remainder of the paper, we propose two algorithms that alleviate
this weakness.

3 E-DLS: Efficient Feature Counts

This section introduces our first algorithm—Estimation by Deterministic Length Segments (E-DLS).
E-DLS computes improved feature count estimates 2. Its main idea is straightforward. We take
each given expert episode and split it into multiple new, but shorted, episodes which we call segments.
We take care to create new segments only that begin with states that are known to be initial states and
extend each segment until the end of the original episode from which they are created.

Next, we describe E-DLS formally. To enhance clarity, we consider only demonstrations Dy = {7}
consisting of a single long episode 7; however the algorithm easily extends to demonstration sets
consisting of multiple episodes. We also omit 7 from the notation in this section when there is no
ambiguity. Also shown algorithmically in Algorithm I, the E-DLS estimate of the feature counts is
computed as

N(@j) FG9)

Z Z Z @ (3¢,a¢) - 4

§€8a =1 1= f(5,0) (j)

Recall that S, is the set of states with positive initial probabilities. The functions N () and f(j, k)
represent the number of occurrences and the index of the k-th occurrence of the state j in the episode

T respectively. The functions are formally defined as f (4,0) =0and
fGo) = min{l] 7] 21> fGi- 1,8 =4}, N() = max{l| f(G.0) < 7]}

It is important to note that (4) weighs each segment by the initial probability, «;, of the state that
starts the segment. This additional weight ensures that segments with differing initial states will be
counted with correct proportions. We recognize that our algorithm results in different summations
overlapping certain portions of 7, which may, in turn, result in some additional bias in the estimation.
However, we found that when we extend all segments until the end of the episode we observe the
most impressive results. This may be due to overlapping segments contributing additional value
toward the estimation.

4 E-SLS: Unbiased Efficient Feature Counts

In this section, we refine the E-DLS algorithm in order to get a statistically unbiased estimate of
feature counts with a new algorithm called Estimation by Stochastic Length Segments (E-SLS). E-DLS
algorithm is biased because of the deterministic nature of segment lengths. We eliminate this bias by
allowing segment lengths to fit a distribution based on probabilistic termination. This approach is
motivated by the equivalence between the discounting by ~ and a total return undiscounted problem
with 1 — ~ probability of termination in each step [7].

For E-SLS, we use the same scenario that we used for E-DLS, such that we are assuming access to
only one longer episode, 7. E-SLS builds on E-DLS but segments do not continue until the end of the
episode. The length C; of the i-th segment is randomly sampled from a geometric distribution with
success probability (1 — ). Intuitively, this means that each segment terminates with the probability
of termination being (1 — ). E-SLS proceeds as follows. Sample C; ~ Geom(1 — ) for sufficiently



Error Norm | x=1(Ly) x=2(Ly) Method | MM-IRL LPAL

Standard 4.91+2.11 6.41 +2.09 Standard 2.508 £ 0.522 2.297 £ 0.756

LSTD-u 294 £0.00 4.34+£0.00 LSTD-u 0.772 £+ 0.000 0.778 £ 0.000

E-DLS 1.08 2 0.02 2.08 +0.01 E-DLS 3.166 £+ 0.000 3.230 4 0.000

E-SLS 1.174+0.00 2.29+0.00 E-SLS 3.051 +0.001 3.230 &+ 0.000
Table 1: Feature count estimation error Table 2: Policy return after using ¥ to esti-
|AE — ¥, mate an expert reward function with IRL

many ¢ = 1,2, .. .. Here, Geom is the geometric distribution. The feature counts are then estimated
according to
N(G) f(.0)+Ci

=22 2

JESa =1 t=f(4,i) ()

st;at) . )

The functions N (j) and f(j,7) represent the number of occurrences and the index of the i-th
occurrence of the state j in the episode 7 respectively. These functions are defined the same as they
were in Section 3.

An essential difference between (5) and (4) is that (5) lacks the multiplicative discount factor
component. The discount rate is instead handled implicitly using the stochastic episode length. The
seemingly minor modification of E-DLS to use a stochastic length sequence makes the algorithm
unbiased. We state this property formally next, and it is proven in Appendix C.

Theorem 1. E-SLS algorithm (5) computes an unbiased estimator of feature counts: E [ e ] =u
assuming that 7 is sufficiently long.

To the best of our knowledge, E-SLS is the first unbiased method of estimating occupancy frequencies
and feature counts.

S Empirical Results

In this section, we present experimental results on a benchmark problem to indicate the experimental
promise of E-DLS and E-SLS. This benchmark problem is called the River Swimmer.

For the River Swimmer problem, we use 10 states. The actions for this MDP are simple, you can
either swim forward or swim backward. The initial state probability for this MDP gives a 50% chance
of starting in state O (beginning of the river) and a 50% chance of starting in state 9 (the end of the
river). Each state in the River Swimmer MDP represents progress as the agent looks to swim up the
river. As such, the transition probabilities for this MDP tend to force the agent backwards as the
current would suggest in a real-life river. The rewards for this MDP is unknown to the IRL agent,
however the expert acts under the true rewards in a simulated means of extracting one long episode
of river swimming. The true optimal policy is to always swim forward, as the rewards at higher states
are greater.

The results for the River Swimmer experiment are shown in Table 1 and Table 2. The rows of both
tables represent the estimation method of estimating Feature Counts, while the columns represent
the metric we use after using that estimation method. We ran 200 individual experiments where
long episodes of length 3000 were used. Each estimation method was used on each episode, and a
collection of metrics were used to evaluate their effect on performance. For Table 1, we use both L
and Ly error norms to show different error measurements. L; is computed by ||@® — p™||; and Lo
is computed by ||2® — pu™||2. While estimation error is important, it does not necessarily indicate
that we will achieve better policy return after using our estimated % in IRL algorithms. Because
of this, we show in Table 2 the return accomplished after value iteration when we use IRL methods
to estimate a reward function. For IRL methods we use Max-Margin (MM-IRL) [1] and Linear
Programming Apprenticeship Learning (LPAL) [9]. E-DLS, E-SLS, LSTD-y, and Standard are the
[F estimation method that we used for both Table 1, and Table 2.

As noted in Section 1, LSTD-u looks to tackle the same scenario as E-DLS and E-SLS; when our
agent is given a singular long expert episode. Shown in Table 1, LSTD-u predicts a ¥ that is



closer to the true expert feature counts, u® than the Standard. This is expected, as the goal of
LSTD-u is to outperform previous methods when given longer episodes. However, it is noted that
LSTD-u performs the worst when using subsequent IRL algorithms. We theorize that this is due
to the temporal difference methodologies and the effect that bootstrapping has on generalizing the
feature count estimation for states not visited. Further analysis of LSTD-p’s inefficiency with respect
to policy return is needed to gain better theory on these results.

The emboldened results in Table 1 highlight the estimation accuracy of our new methods in practice.
The L; error for E-DLS and E-SLS is roughly a fourth of the Standard method’s, and a third of
LSTD-p’s. These results indicate that the element-wise error of E-DLS and E-SLS estimations are
significantly lower than previous methods. The Ly error for E-DLS and E-SLS is roughly a third of
the Standard method’s, and a half of LSTD-p’s. These error results indicate that the estimated feature
count vector is much closer to the true feature count vector in direction and magnitude.

The emboldened results in Table 2 highlight the practical promise of our new methods with respect to
policy return after obtaining a learned policy with IRL algorithms. When given long episodes, it is
clear that segmenting the episodes based on starting states with E-DLS and E-SLS allows for more
informative estimates in the IRL algorithm. It is interesting to note that, while E-SLS is an unbiased
estimation method, E-DLS performs better with MM-IRL. For LPAL, E-DLS and E-SLS result in
the same policy return. Further analysis is needed to determine the reason for these results. It is also
important to note that LSTD-y, E-DLS, and E-SLS, all produce results with very low variance over
the 200 experiments. The Standard method has relatively high variance in general. A potential reason
for this is that the Standard method is dependent on the behavior earlier in the episode because the
discount factor causes diminishing value in later behaviors, which causes the estimated feature counts
to vary with the stochastic behavior earlier in the episodes. Segmentation in E-DLS and E-SLS allows
the algorithm to refresh the discount factor and have better insight into behaviors that follow starting
states that appear throughout the long episode, and makes it less dependent on behaviors observed
earlier in the episode.

6 Conclusion

We proposed two new methods for estimating feature counts. Feature count estimation is an important
component of many IRL algorithms. On the theoretical side, we propose the first unbiased method
for estimating feature counts. Our limited empirical results indicate the promise of the proposed
methods. The future work should focus on deepening the theoretical understanding of these new
methods as well as on more comprehensive empirical results.

References

[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning.
In Proceedings of the Twenty-First International Conference on Machine Learning, ICML *04,
page 1, New York, NY, USA, 2004. Association for Computing Machinery.

[2] Jonathan Ho and Stefan Ermon. Generative Adversarial Imitation Learning. In Advances in
Neural Information Processing Systems, pages 7461-7472, 2016. ISSN: 10495258.

[3] Jessie Huang, Fa Wu, Doina Precup, and Yang Cai. Learning safe policies with expert guidance.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 31, pages 9105-9114. Curran
Associates, Inc., 2018.

[4] Edouard Klein, Matthieu Geist, and Olivier Pietquin. Batch, Off-Policy and Model-Free Ap-
prenticeship Learning. In David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg,
Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bern-
hard Steffen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard
Weikum, Scott Sanner, and Marcus Hutter, editors, Recent Advances in Reinforcement Learning,
volume 7188, pages 285-296. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[5] Gang Luo. A review of automatic selection methods for machine learning algorithms and
hyper-parameter values. Network Modeling Analysis in Health Informatics and Bioinformatics,
5:1-16, 2016.



[6] Bilal Piot, Matthieu Geist, and Olivier Pietquin. Bridging the gap between imitation learning
and inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning
Systems, 28(8):1814—1826, August 2017. Conference Name: IEEE Transactions on Neural
Networks and Learning Systems.

[7] Martin L Puterman. Markov decision processes: Discrete stochastic dynamic programming.
Wiley-Interscience, 2005.

[8] R S Sutton and A G Barto. Reinforcement learning: an introduction. The MIT Press, 2 edition,
2018. arXiv: 1603.02199 ISSN: 1045-9227.

[9] Umar Syed, Michael Bowling, and Robert E. Schapire. Apprenticeship learning using linear
programming. International Conference on Machine Learning (ICML), pages 1032—-1039, 2008.
ISBN: 9781605582054.

[10] Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum Entropy
Inverse Reinforcement Learning. In AAAI Conference on Artificial Intelligence, 2008.



[ T 7 S

NI S - 7 I R

10

‘Discounted weight‘ 1 v 72 3 4t % A0 4T 4B 40 ‘

‘ Demonstration (7) ‘ So) Ss S3 S5 S3 S1 S S5 (Sp) S4 ... ‘

Segment 1 So) Ss S3 S5 S3 S1 S S5  So  S4
Segment 2 S1) 82 S5—89 Sa
Segment 3 S0 )< 84

Table 3: An example of a segmented demonstration.

A Example

Consider the following simple scenario to illustrate how E-DLS works. We have an IRL system with
initial states S, = i;so, s1} and given an expert episode 7 depicted in the top row of Table 3. In
order to estimate 1 we traverse through 7 sequentially, and initialize new segments as shown in
Table 3. Each segment begins with sg or s;, one of the initial states. Creating segments allows us to
restart the discount factor when observing the start state, which will give the starting states a higher
valued estimation upon each re-occurrence. We argue that this gives value to the estimation of ¥ by
exposing it to segments that show varying trajectories following a starting state.

B Algorithms

Algorithm 1: E-DLS

Data: 7,v, a, ¢
Result: i¥//Estimated feature counts given the expert data

af < 0;//Vector of zeros existing in RF
fort=1...|7|do

counts < 0;

forj=1...tdo

| counts < counts + iz, - 7" 77;

end

i «— ¢(3;,a;) - counts;
end
return 3 ;

Algorithm 2: E-SLS

Data: 7,v, a, ¢
Result: i¥//Expected feature counts given the expert data

i < 0;//Vector of zeros existing in RF
t=1;
while ¢ < |7| do
if oz, > 0 then
¢« Geom(1 —7);
forj=t...t+cdo
| AT B+ as, - 0(35,0;);
end
end
t+—t+1;
end
return i ;




C Proofs

Proof of Theorem 1. Before commencing the proof, we state two well-known identities that we will
need to derive our result. First, one can easily show by algebraic manipulation that:

SN = > f6H)=D> fid)- 6)
i=1 j=i 1<i<j<oo j=1i=j

Second, using the analytical expressions for the geometric sum and the series, we get from algebraic
manipulation that

li_o;VZ(l— (Zv—zv> (1—~ _1_<§71>(1_

(N
L—y t
=1- 1—~)=~".
< T > (1= =v
Here we prove that E [ﬁE ] = u¥. Given an expert episode, 7, and considering (5), we get that:
N () f(4,6)+Ci |
BEE| T3S e 15, -
JE€Sa =1 4=f(j,i) A
NG [iGates T
= Z Z E Z J\A/'(jj) @ (Se,a0) | 850 =1 Move expectation inwards
JE€Sa i=1 t=F(4,1) i
NG)
— Z Z J [Zd) (8¢, ay) |s FGi) = ] Take out constants
JES, =1 )
C;
=Y q .E[ ¢ (31,a0) | 35 j] Remove N ()
JESa t=1
oo l
= Z Q- ZP(Ci =1)- Z]E [P (8t,a:) | $1=17] Expand expectation based on Geom(1 — )
JESs =1 t=1
= Z a; - ZE [ (8,a0) |51 =17]" Z P(C; =1) Re-arrange summation using (6)
JESa t=1
oo (o)
=Y ;> E[¢(3,a:) |1 =5]-> 7" -(1—7) Substitute P(C; =1) from Geom(1 — )
JESa t=1
= Z O‘J"Z & (8,a0) |81 =7]-7"" From (7)
JESa t=1
This proves the desired equality. O



	Introduction
	Preliminaries and Framework
	E-DLS: Efficient Feature Counts
	E-SLS: Unbiased Efficient Feature Counts
	Empirical Results
	Conclusion
	Example
	Algorithms
	Proofs

